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 Integrity in a System On a Chip (SOC) 

 Key Distributions Service 

 

 

 Isolation 

 CPU Virtualization 

 I/O Virtualization 

 Secure Coprocessors 
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 Physical Secure Processors 
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SECURITY IS IN THE NEWS EVERY DAY 
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DEFINITION: SECURE SYSTEM DESIGN 

 Leendert’s definition of a secure system 

 

 

 Some intrinsic challenges 

 Lack of specifications 

 Lack of complete specifications 

 Impossible to prove the absence of more 

 Lack of a system view 

 Secure system design (like any engineering project) is always a cost/benefit tradeoff 

 Central to a secure system design are 

 Well-defined security properties (objectives) 

 Threat analysis (what are we protection from whom, cost of entry) 

 Design methodologies (test plan, penetration testing, code review, etc.) 

 What happens if you don’t do this? 

 

 

A system that behaves as specified, nothing less, nothing more  
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EXAMPLE: CODE INJECTION ATTACK 

void f(void) { 

    char buffer[20]; 

    if (gets(buffer) != NULL) 

        ... 

Input 1: 

“0123456789” 

Input 2: 

“012345678901234567890123456789012345

678901234567890123456789...” 

char buffer[20] 

Input 3: 

“01234567890123456789...\xR1\xR2\xR3\xR

4\x31\xC0...” 

Software is the easiest attack vector 
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EXAMPLE: SIDE CHANNEL ATTACKS 
Hardware is not safe either 

 Side channels: Electronic components leak a lot of signals 

 Power signals (SPA & DPA) 

 RF signals (EMSEC) 

 Resource contention (cache contention, TLB contention, etc) 

 … 

 All these signals can be used to reconstruct the computation at hand 

 Recover secret keys! 

 Protecting against these kind of attacks is hard and expensive 

 

As an illustration: 

Smartcard simple power 

attack (SPA) where the 16 

DES rounds are clearly 

visible; key schedule 

computation precedes DES 

with key clearly visible 

Source:  Paul Kocher, et. al., Differential Power Analysis 

http://www.cryptography.com/public/pdf/DPA.pdf
http://www.cryptography.com/public/pdf/DPA.pdf
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SECURE SYSTEM ELEMENTS 

Integrity: Ensuring specified behavior  

 Secure boot and Code signing 

 Access Control Lists (ACLs) and Capabilities 

 Trusted Execution Environments / Secure OSes 

 Hardware accelerators (typically crypto, hash, etc) 

 Separation of responsibility 

 Least privilege 

 Defense in depth / layers 

 

 

 

 

Isolation: Eventually things will go wrong 

 Minimal Trusted Computing Base (TCB) 

 CPU & I/O virtualization 

 Dedicated coprocessors 

 Enclaves 

 Memory encryption 

 Hardware tamper resistant 

 Shielding (EM leakage, power line filtering, …) 

 

Capabilities typically found in secure systems 
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INTEGRITY 
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INTEGRITY NEEDS TO BE GROUNDED IN HARDWARE 

Integrity starts at the root of a system 

Anything short of that allows an attacker to 
interpose the bootstrap process and enables 
BIOS viruses and other Advanced Persistent 
Threats (APTs). 

Integrity needs to be anchored within the 
hardware so that it cannot be circumvented 

The root of trust needs to be immutable 

 

 

Achievable through read-only boot sectors or 
separate security processors that guarantee the 
immutability 

– What guarantees the integrity of the secure 
processor in that case? 

 

Immutable root of trust 
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EXAMPLE: SECURE BOOT 

POST 
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Under mfg key Under system key You also need to consider: 

Secure key storage for the 
verification keys 

Roll back prevention for 
firmware blobs and keys 

Revocation of keys 

Attestation 

Key management 
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TRUSTED PLATFORM MODULE 
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Non-Volatile 
Storage 

Key  
Generation 

Platform 
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Key (EK) 

Random Number 
Generator 



|   HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014  12 

TRUST PLATFORM MODULE PRINCIPLES 

Program Configuration Registers (PCR) 

Extend (PCRn, H): PCRn = f (PCRn || H), where f is a secure hash function 

Quote (PCRn, AIKi): return PCRn encrypted under AIKi 

Sealed Storage 

Encrypt data under a specific PCR value 

Can only be released if PCR has that value 

Attestation with help from a trusted 3rd party 

Non-Volatile Storage 

Storage Root Key 

Crypto agility 
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EXAMPLE: AUTHENTICATED BOOT (PC) 

 CRTM 

GRUB 
Stage1 

(MBR) 

Linux 
Kernel 

PCR01-07 

 POST 

BIOS Bootloader 

ROT 
GRUB 
Stage1.5 

PCR04-05 TPM 

Operating System 

/bin/ls 

GRUB 
Stage2 

PCR08 

/usr/sbin/httpd 

PCR10 

“Measure before Load” 
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INTEGRITY IN A SYSTEM ON A CHIP (SOC) 

CPU Cores 

Video 
Engines 

Codecs 

Security engine 
Power 

Management 
Memory & 

PHY training 
Audio 

Processor 
Environment 

controller (EC) 

Image 
Processor 

(ISP) 

Shaders 

Control 
processor 

GPU 

 The CPU is no longer the center of an SOC, it is not even the first processor that runs! 

 All field-upgradable processors need integrity protection (secure boot) 

What about 3rd party IP? 
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EXAMPLE: KEY MANAGMENT 

Global Key 
Distribution 

Service 

HDCP 
Consortium 

Customer 
keys 

Secure debug 
unlock 

TSM Key generation 
Firmware 

signing 

Manufacture 
Fuse/OTP 

Local key 
server 
(HSM) 

Fab 

Replicated 

Keys are typically stored in Fuses/OTP 

 Typically asymmetric keys 

How to manage these keys? 

 Content protection keys 

 Customer keys 

 Secure debug unlock 

 Trusted Service Managers (TSM) 

 Signed Drivers and firmware 

 Fault tolerant design 

 Injecting the keys needs to happen in a 

secure environment 

Secure debug unlock 
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ISOLATION 
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CPU VIRTUALIZATION 

Hardware 

Hypervisor 

Guest Applications 

VM Worker 
VM Worker 
VM Worker 

WMI 

VM 

Service 

Virtualization stack 

Windows Windows 
VSPs VSCs 

vmbus 

kernel kernel 

enlightenments 

Microsoft Hyper-V Hypervisor 

 Multiple consumers share a resource 
while maintaining the illusion that each 
consumer owns the full resource 

 Memory, processor(s), storage, peripherals, 
entire machines 

 Goes all the way back to Popek and 
Goldberg [1974] 

 Virtual Machine Monitor (VMM) or 
hypervisor is the software layer that 
provides one or more Virtual Machine 
(VM) abstractions 

 Typically used to increase the utilization of 
a system 

 Recently also used a security isolation 
mechanism 

 Every modern processor (ARM, Intel, 
AMD) has hardware support for efficient 
virtualization 
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I/O VIRTUALIZATION 

  I/O MMU 

Device 

Manager 

VF VF VF 

PF 

PF = Physical Function, VF = Virtual Function 

I/O Device 

Guest OS 

Device Driver 

Guest OS 

Device Driver 

Guest OS 

Device Driver 

Virtualization 

Layer 

Fixed I/O pass-thru with VMWare and an IOMMU 

An IOMMU is akin to an MMU: It 

translates I/O address to physical 

memory addresses  

Efficiency: Used to assign I/O (PCIe) 

devices directly to a virtual machine 

without going through the hypervisor 

 Isolation: Containerizes the damage 

devices can do through bus master 

DMA 

 For example USB, Firewire and Display Port attacks 

An IOMMUs is standard in server, in 

client systems it depends on the value 

proposition 

http://vmweb.vmware.com/product_mktg/diagrams/images/icons/NIC_icon.zip
http://vmweb.vmware.com/product_mktg/diagrams/images/icons/NIC_icon.zip
http://vmweb.vmware.com/product_mktg/diagrams/images/icons/NIC_icon.zip
http://vmweb.vmware.com/product_mktg/diagrams/images/icons/NIC_icon.zip
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EXAMPLE: AMD’S PLATFORM SECURITY PROCESSOR 

Secure OS in TEE 
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App 
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ARM processor with TrustZone® security extensions 
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AMD SOC 

Platform Security coProcessor (PSP) 

 The Platform Security coProcessor (PSP) is an integrated coprocessor next to the AMD64 cores 

 The PSP runs a certified secure OS/kernel 

 The PSP can use Trusted Service Managers (TSM) for provisioning and lifecycle management 
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PLATFORM SECURITY PROCESSOR APPLICATIONS 

PLATFORM SECURITY PROCESSOR HW 

BOOT ROM CODE (HW) 

CLIENT-TARGETED SOLUTIONS 
(e.g., mobile payments, data protection, identity 

mgmt., antimalware, content) 

END-TO-END / CLIENT-TO-CLOUD  
(e.g., policy enforcement, integrity monitoring, 

asset mgmt., virtual HSM) 

SECURITY KERNEL 

SECURE 

BOOT 
TPM 2.0 

CRYPTO 

HANDLERS 

 Platform Security Foundational support 

 Trusted Execution Environment 

 Secure boot 

 Cryptographic acceleration 

 TPM functionality 

Client solutions enablement 

 3rd party solutions – e.g., payments, anti-theft, 
identity management, data protection, anti-
malware, content protection, bring-your-own-
device 

End-to-end / client-to-cloud 

 3rd party solutions – e.g., vertical solutions, policy 
enforcement, integrity monitoring, audit & asset 
management, virtual HSM 
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ENCRYPTED MEMORY: THE SOC AS TRUST BOUNDARY 

 Generally, all software code and data is stored in DRAM external to the SOC 

 An attacker with physical access to the DRAM could 

 Observe secrets (like encryption keys) 

 Re-write code (bypass authentication checks) 

 Etc. 

 Well-known memory attacks include 

 HW Probing/monitoring 

 Probing the physical DRAM interface to observe data going to the SOC 

 DMA Attacks 

 Using a malicious hardware connection to read/write DRAM directly 

 Examples: Firewire/Thunderbolt attacks 

 Cold Boot 

 Freezing a DRAM chip and transferring it to another computer to read its data 

 Potential future NV technologies (e.g. memristor) would not even require freezing 

 Induce memory errors and exploit those 

Source: https://citp.princeton.edu/research/memory/ 

Source: https://www.cs.princeton.edu/~appel/papers/memerr.pdf 
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EXAMPLE: ENCRYPTED MEMORY IMPLEMENTATION 

 Attack model: Everything outside the SOC is untrusted 

 Memory modification attacks 

 Rollback attacks 

 Cut & paste attacks 

 Solution: All memory is encrypted and integrity protected 

 Efficient implementation is possible using counter modes such as 

 IAPM, OCB and GCM (Galois/Counter Mode, part of suite-B) 

 Integrate both confidentially and integrity in a single pass 

 Curry-in memory locations and/or generation counters, or IV 

 Where to implement memory encryption? 

 Cache controller 

 North Bridge 

 Memory controller 

 Challenges 

 Increases memory access latencies 

 SRAM required to keep the state (typically solved by partial integrity guarantees) 
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PUTTING IT ALL TOGETHER 
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EXAMPLE: SECURE SYSTEM (MICROSOFT’S NGSCB 2004) 

Scenarios
Administration & 

Management

Services and User 

I/OWindows

Nexus

Windows

Apps

Main OS

USB DriverDriver NexusMgr.sys 

HAL

Secure 

Input

Secure 

Video

TPM 

1.2
CPU RAM

Windows

AppsWindows

Apps

Agent
Trusted User 

Engine (TUE)

TSP

TSP

Runtime

Most hardware

TSP

Runtime Runtime

TSP

Agent

•Great device diversity  
•Thousands of drivers 
•MLOC 

•Little device diversity 
•Only a few drivers 
•KLOC 

Source: Microsoft’s WinHEC 2004 presentation 
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EXAMPLE: IBM’S SECURE CRYPTOGRAPHICS COPROCESSORS 

IBM 47xx PCI Cryptographic Coprocessor 

• High-speed cryptography (for back then) 

• Provides secure storage (e.g., keys) 

• Tamper-resistant,  
sensing and responding 

• Detecting physical attacks: 
probe, voltage, temperature, radiation 

• Programmable 

• Secure configuration and field updates 

• Supported in PCs  mainframes 

• Windows, Solaris, Linux, AIX, OS/390, OS/400 

• 4758 in 2001, followed in 2003 by the 4764, and in 2010 the 4765 

Source: http://www-03.ibm.com/security/cryptocards/pcixcc/overhardware.shtml 
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4758 SECURE PACKAGING 

Source: Ron Perez, IBM T.J. Watson Research Center 
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SUMMARY 

Attacks 

 Software (easiest attack vector today) 

 Hardware (not hard but requires physical access) 

 The number of hardware attacks are rising 

Two key building blocks 

 Integrity (know what it is you are running) 

 Isolation / containment (prevent things going wrong and control 
them when they do) 
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MATERIAL FOR FURTHER STUDY 

Secure system design 

 Ross Anderson, Security Engineering 

Side channel attacks 

 Jude Ambrose, Power Analysis Side Channel Attacks: The 
Processor Design-level Context 

  Paul Kocher, et al., Differential Power Analysis 

Memory attacks  

 Princeton memory attacks: 
https://citp.princeton.edu/research/memory/, 
https://www.cs.princeton.edu/~appel/papers/memerr.pdf 

 USB, Firewire & Display Port DMA attacks: 
http://work.delaat.net/rp/2011-2012/p14/report.pdf 

Code inject attacks 

 Roemer, et al., Return oriented programming: Systems, 
Languages, and Applications 

 Secure boot 

 Bill Arbaugh, A secure and reliable bootstrap architecture  

 TCG & TPM 

 http://www.trustedcomputinggroup.org 

 Sailer et al. Design and Implementation of a TCG-based  
Integrity Measurement Architecture 

 Secure virtualization 

 Ron Perez, et al., Virtualization and Hardware-Based Security 

 I/O virtualization 

 Muli-Ben Yehuda, Utilizing IOMMUs for Virtualization in Linux 
and Xen 

 Trusted Execution Environments 

 Global Platform 

 Secure Coprocessor 

 Todd Arnold, et al.,The IBM PCIXCC: A new cryptographic 
coprocessor for the IBM eServer 

http://www.cl.cam.ac.uk/~rja14/book.html
http://www.unsworks.unsw.edu.au/primo_library/libweb/action/dlDisplay.do?vid=UNSWORKS&docId=unsworks_5514
http://www.unsworks.unsw.edu.au/primo_library/libweb/action/dlDisplay.do?vid=UNSWORKS&docId=unsworks_5514
http://www.unsworks.unsw.edu.au/primo_library/libweb/action/dlDisplay.do?vid=UNSWORKS&docId=unsworks_5514
http://www.unsworks.unsw.edu.au/primo_library/libweb/action/dlDisplay.do?vid=UNSWORKS&docId=unsworks_5514
http://www.unsworks.unsw.edu.au/primo_library/libweb/action/dlDisplay.do?vid=UNSWORKS&docId=unsworks_5514
http://www.unsworks.unsw.edu.au/primo_library/libweb/action/dlDisplay.do?vid=UNSWORKS&docId=unsworks_5514
http://www.cryptography.com/public/pdf/DPA.pdf
http://www.cryptography.com/public/pdf/DPA.pdf
http://www.cryptography.com/public/pdf/DPA.pdf
https://citp.princeton.edu/research/memory/
https://citp.princeton.edu/research/memory/
https://www.cs.princeton.edu/~appel/papers/memerr.pdf
https://www.cs.princeton.edu/~appel/papers/memerr.pdf
https://www.cs.princeton.edu/~appel/papers/memerr.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
https://cseweb.ucsd.edu/~hovav/dist/rop.pdf
https://cseweb.ucsd.edu/~hovav/dist/rop.pdf
http://www.umiacs.umd.edu/publications/secure-and-reliable-bootstrap-architecture
http://www.umiacs.umd.edu/publications/secure-and-reliable-bootstrap-architecture
http://www.umiacs.umd.edu/publications/secure-and-reliable-bootstrap-architecture
http://www.umiacs.umd.edu/publications/secure-and-reliable-bootstrap-architecture
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org
https://www.usenix.org/legacy/event/sec04/tech/full_papers/sailer/sailer_html/
https://www.usenix.org/legacy/event/sec04/tech/full_papers/sailer/sailer_html/
https://www.usenix.org/legacy/event/sec04/tech/full_papers/sailer/sailer_html/
https://www.usenix.org/legacy/event/sec04/tech/full_papers/sailer/sailer_html/
https://www.usenix.org/legacy/event/sec04/tech/full_papers/sailer/sailer_html/
https://www.usenix.org/legacy/event/sec04/tech/full_papers/sailer/sailer_html/
https://www.usenix.org/legacy/event/sec04/tech/full_papers/sailer/sailer_html/
http://www.computer.org/csdl/mags/sp/2008/05/msp2008050024-abs.html
http://www.computer.org/csdl/mags/sp/2008/05/msp2008050024-abs.html
http://www.computer.org/csdl/mags/sp/2008/05/msp2008050024-abs.html
http://www.computer.org/csdl/mags/sp/2008/05/msp2008050024-abs.html
http://www.computer.org/csdl/mags/sp/2008/05/msp2008050024-abs.html
http://landley.net/kdocs/ols/2006/ols2006v1-pages-71-86.pdf
http://landley.net/kdocs/ols/2006/ols2006v1-pages-71-86.pdf
http://landley.net/kdocs/ols/2006/ols2006v1-pages-71-86.pdf
http://landley.net/kdocs/ols/2006/ols2006v1-pages-71-86.pdf
http://landley.net/kdocs/ols/2006/ols2006v1-pages-71-86.pdf
http://landley.net/kdocs/ols/2006/ols2006v1-pages-71-86.pdf
http://landley.net/kdocs/ols/2006/ols2006v1-pages-71-86.pdf
http://www.globalplatform.org/mediaguidetee.asp
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5388875
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5388875
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5388875
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5388875
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GLOSSARY OF TECHNICAL TERMS 

 
OTP – One Time Programmable 

PCR – Program Configuration Register 

POST – Power On Self Test 

ROT – Root of Trust 

SOC – System On a Chip 

SPA – Simple Power Analysis 

TCB – Trusted Computing Base 

TLB – Translations Lookaside Buffer 

TPM – Trusted Platform Module 

TSM – Trusted Service Manager 

VM – Virtual Machine 

VMM – Virtual Machine Monitor 

 ACL – Access Control List 

 AIK – Attestation Identity Key 

 CPU – Central Processing Unit 

 CRTM  - Core Root of Trust Management 

 DES – Data Encryption Standard (obsolete algorithm) 

 DPA – Differential Power Analysis 

 EM – Emission 

 EMSEC  - Emission Security 

 GPU – Graphics Processing Unit 

 GRUB – Linux bootstrap loader 

 HSM – Hardware Security Model 

 IOMMU – I/O Memory Management Unit 

 MMU  - Memory Management Unit 
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