
| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 1

SECURE SYSTEMS DESIGN
LEENDERT VAN DOORN

CORPORATE FELLOW
leendert.vandoorn@amd.com

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 2

OUTLINE

 Introduction

 Software Attacks

 Hardware Attacks

 Integrity

 Immutable Root of Trust

 Secure Boot

 Trusted Platform Modules

 Integrity in a System On a Chip (SOC)

 Key Distributions Service

 Isolation

 CPU Virtualization

 I/O Virtualization

 Secure Coprocessors

 Encrypted Memory

Putting it all together

 Secure Hypervisor

 Physical Secure Processors

Summary

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 3

SECURITY IS IN THE NEWS EVERY DAY

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 4

DEFINITION: SECURE SYSTEM DESIGN

 Leendert’s definition of a secure system

 Some intrinsic challenges

 Lack of specifications

 Lack of complete specifications

 Impossible to prove the absence of more

 Lack of a system view

 Secure system design (like any engineering project) is always a cost/benefit tradeoff

 Central to a secure system design are

 Well-defined security properties (objectives)

 Threat analysis (what are we protection from whom, cost of entry)

 Design methodologies (test plan, penetration testing, code review, etc.)

 What happens if you don’t do this?

A system that behaves as specified, nothing less, nothing more

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 5

EXAMPLE: CODE INJECTION ATTACK

void f(void) {

 char buffer[20];

 if (gets(buffer) != NULL)

 ...

Input 1:

“0123456789”

Input 2:

“012345678901234567890123456789012345

678901234567890123456789...”

char buffer[20]

Input 3:

“01234567890123456789...\xR1\xR2\xR3\xR

4\x31\xC0...”

Software is the easiest attack vector

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 6

EXAMPLE: SIDE CHANNEL ATTACKS
Hardware is not safe either

 Side channels: Electronic components leak a lot of signals

 Power signals (SPA & DPA)

 RF signals (EMSEC)

 Resource contention (cache contention, TLB contention, etc)

 …

 All these signals can be used to reconstruct the computation at hand

 Recover secret keys!

 Protecting against these kind of attacks is hard and expensive

As an illustration:

Smartcard simple power

attack (SPA) where the 16

DES rounds are clearly

visible; key schedule

computation precedes DES

with key clearly visible

Source: Paul Kocher, et. al., Differential Power Analysis

http://www.cryptography.com/public/pdf/DPA.pdf
http://www.cryptography.com/public/pdf/DPA.pdf

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 7

SECURE SYSTEM ELEMENTS

Integrity: Ensuring specified behavior

 Secure boot and Code signing

 Access Control Lists (ACLs) and Capabilities

 Trusted Execution Environments / Secure OSes

 Hardware accelerators (typically crypto, hash, etc)

 Separation of responsibility

 Least privilege

 Defense in depth / layers

Isolation: Eventually things will go wrong

 Minimal Trusted Computing Base (TCB)

 CPU & I/O virtualization

 Dedicated coprocessors

 Enclaves

 Memory encryption

 Hardware tamper resistant

 Shielding (EM leakage, power line filtering, …)

Capabilities typically found in secure systems

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 8

INTEGRITY

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 9

INTEGRITY NEEDS TO BE GROUNDED IN HARDWARE

Integrity starts at the root of a system

Anything short of that allows an attacker to
interpose the bootstrap process and enables
BIOS viruses and other Advanced Persistent
Threats (APTs).

Integrity needs to be anchored within the
hardware so that it cannot be circumvented

The root of trust needs to be immutable

Achievable through read-only boot sectors or
separate security processors that guarantee the
immutability

– What guarantees the integrity of the secure
processor in that case?

Immutable root of trust

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 10

EXAMPLE: SECURE BOOT

POST

BL0
(immutable)

Verify
Signature

BL1

BL1

Verify
Signature

UEFI

UEFI

Verify
Signature
OSBOOT

Halt and Recover

Su
cc

e
ss

Fail

Su
cc

e
ss

Su
cc

e
ss

Under mfg key Under system key You also need to consider:

Secure key storage for the
verification keys

Roll back prevention for
firmware blobs and keys

Revocation of keys

Attestation

Key management

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 11

TRUSTED PLATFORM MODULE

RSA
Engine

Non-Volatile
Storage

Key
Generation

Platform
Configuration
Register (PCR)

Attestation
Identity
Key (AIK)

Opt-In
 L

P
C

 b
u

s

SHA-1
Engine

Trusted Platform Module (TPM 1.2)

Tamper-Resistant Packaging

I/O

Exec
Engine

Endorsement
Key (EK)

Random Number
Generator

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 12

TRUST PLATFORM MODULE PRINCIPLES

Program Configuration Registers (PCR)

Extend (PCRn, H): PCRn = f (PCRn || H), where f is a secure hash function

Quote (PCRn, AIKi): return PCRn encrypted under AIKi

Sealed Storage

Encrypt data under a specific PCR value

Can only be released if PCR has that value

Attestation with help from a trusted 3rd party

Non-Volatile Storage

Storage Root Key

Crypto agility

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 13

EXAMPLE: AUTHENTICATED BOOT (PC)

 CRTM

GRUB
Stage1

(MBR)

Linux
Kernel

PCR01-07

 POST

BIOS Bootloader

ROT
GRUB
Stage1.5

PCR04-05 TPM

Operating System

/bin/ls

GRUB
Stage2

PCR08

/usr/sbin/httpd

PCR10

“Measure before Load”

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 14

INTEGRITY IN A SYSTEM ON A CHIP (SOC)

CPU Cores

Video
Engines

Codecs

Security engine
Power

Management
Memory &

PHY training
Audio

Processor
Environment

controller (EC)

Image
Processor

(ISP)

Shaders

Control
processor

GPU

 The CPU is no longer the center of an SOC, it is not even the first processor that runs!

 All field-upgradable processors need integrity protection (secure boot)

What about 3rd party IP?

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 15

EXAMPLE: KEY MANAGMENT

Global Key
Distribution

Service

HDCP
Consortium

Customer
keys

Secure debug
unlock

TSM Key generation
Firmware

signing

Manufacture
Fuse/OTP

Local key
server
(HSM)

Fab

Replicated

Keys are typically stored in Fuses/OTP

 Typically asymmetric keys

How to manage these keys?

 Content protection keys

 Customer keys

 Secure debug unlock

 Trusted Service Managers (TSM)

 Signed Drivers and firmware

 Fault tolerant design

 Injecting the keys needs to happen in a

secure environment

Secure debug unlock

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 16

ISOLATION

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 17

CPU VIRTUALIZATION

Hardware

Hypervisor

Guest Applications

VM Worker
VM Worker
VM Worker

WMI

VM

Service

Virtualization stack

Windows Windows
VSPs VSCs

vmbus

kernel kernel

enlightenments

Microsoft Hyper-V Hypervisor

 Multiple consumers share a resource
while maintaining the illusion that each
consumer owns the full resource

 Memory, processor(s), storage, peripherals,
entire machines

 Goes all the way back to Popek and
Goldberg [1974]

 Virtual Machine Monitor (VMM) or
hypervisor is the software layer that
provides one or more Virtual Machine
(VM) abstractions

 Typically used to increase the utilization of
a system

 Recently also used a security isolation
mechanism

 Every modern processor (ARM, Intel,
AMD) has hardware support for efficient
virtualization

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 18

I/O VIRTUALIZATION

 I/O MMU

Device

Manager

VF VF VF

PF

PF = Physical Function, VF = Virtual Function

I/O Device

Guest OS

Device Driver

Guest OS

Device Driver

Guest OS

Device Driver

Virtualization

Layer

Fixed I/O pass-thru with VMWare and an IOMMU

An IOMMU is akin to an MMU: It

translates I/O address to physical

memory addresses

Efficiency: Used to assign I/O (PCIe)

devices directly to a virtual machine

without going through the hypervisor

 Isolation: Containerizes the damage

devices can do through bus master

DMA

 For example USB, Firewire and Display Port attacks

An IOMMUs is standard in server, in

client systems it depends on the value

proposition

http://vmweb.vmware.com/product_mktg/diagrams/images/icons/NIC_icon.zip
http://vmweb.vmware.com/product_mktg/diagrams/images/icons/NIC_icon.zip
http://vmweb.vmware.com/product_mktg/diagrams/images/icons/NIC_icon.zip
http://vmweb.vmware.com/product_mktg/diagrams/images/icons/NIC_icon.zip

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 19

EXAMPLE: AMD’S PLATFORM SECURITY PROCESSOR

Secure OS in TEE

Trusted
App

Trusted
App

Trusted
App

Secure Monitor Secure Boot

Isolated
App

Isolated
App

Isolated
App

TrustZone® API

ARM processor with TrustZone® security extensions

Normal world Secure world

AMD64

Boot Environment

OS

A
p

p
lic

at
io

n

A
p

p
lic

at
io

n

A
p

p
lic

at
io

n

A
p

p
lic

at
io

n

AMD SOC

Platform Security coProcessor (PSP)

 The Platform Security coProcessor (PSP) is an integrated coprocessor next to the AMD64 cores

 The PSP runs a certified secure OS/kernel

 The PSP can use Trusted Service Managers (TSM) for provisioning and lifecycle management

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 20

PLATFORM SECURITY PROCESSOR APPLICATIONS

PLATFORM SECURITY PROCESSOR HW

BOOT ROM CODE (HW)

CLIENT-TARGETED SOLUTIONS
(e.g., mobile payments, data protection, identity

mgmt., antimalware, content)

END-TO-END / CLIENT-TO-CLOUD
(e.g., policy enforcement, integrity monitoring,

asset mgmt., virtual HSM)

SECURITY KERNEL

SECURE

BOOT
TPM 2.0

CRYPTO

HANDLERS

 Platform Security Foundational support

 Trusted Execution Environment

 Secure boot

 Cryptographic acceleration

 TPM functionality

Client solutions enablement

 3rd party solutions – e.g., payments, anti-theft,
identity management, data protection, anti-
malware, content protection, bring-your-own-
device

End-to-end / client-to-cloud

 3rd party solutions – e.g., vertical solutions, policy
enforcement, integrity monitoring, audit & asset
management, virtual HSM

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 21

ENCRYPTED MEMORY: THE SOC AS TRUST BOUNDARY

 Generally, all software code and data is stored in DRAM external to the SOC

 An attacker with physical access to the DRAM could

 Observe secrets (like encryption keys)

 Re-write code (bypass authentication checks)

 Etc.

 Well-known memory attacks include

 HW Probing/monitoring

 Probing the physical DRAM interface to observe data going to the SOC

 DMA Attacks

 Using a malicious hardware connection to read/write DRAM directly

 Examples: Firewire/Thunderbolt attacks

 Cold Boot

 Freezing a DRAM chip and transferring it to another computer to read its data

 Potential future NV technologies (e.g. memristor) would not even require freezing

 Induce memory errors and exploit those

Source: https://citp.princeton.edu/research/memory/

Source: https://www.cs.princeton.edu/~appel/papers/memerr.pdf

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 22

EXAMPLE: ENCRYPTED MEMORY IMPLEMENTATION

 Attack model: Everything outside the SOC is untrusted

 Memory modification attacks

 Rollback attacks

 Cut & paste attacks

 Solution: All memory is encrypted and integrity protected

 Efficient implementation is possible using counter modes such as

 IAPM, OCB and GCM (Galois/Counter Mode, part of suite-B)

 Integrate both confidentially and integrity in a single pass

 Curry-in memory locations and/or generation counters, or IV

 Where to implement memory encryption?

 Cache controller

 North Bridge

 Memory controller

 Challenges

 Increases memory access latencies

 SRAM required to keep the state (typically solved by partial integrity guarantees)

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 23

PUTTING IT ALL TOGETHER

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 24

EXAMPLE: SECURE SYSTEM (MICROSOFT’S NGSCB 2004)

Scenarios
Administration &

Management

Services and User

I/OWindows

Nexus

Windows

Apps

Main OS

USB DriverDriver NexusMgr.sys

HAL

Secure

Input

Secure

Video

TPM

1.2
CPU RAM

Windows

AppsWindows

Apps

Agent
Trusted User

Engine (TUE)

TSP

TSP

Runtime

Most hardware

TSP

Runtime Runtime

TSP

Agent

•Great device diversity
•Thousands of drivers
•MLOC

•Little device diversity
•Only a few drivers
•KLOC

Source: Microsoft’s WinHEC 2004 presentation

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 25

EXAMPLE: IBM’S SECURE CRYPTOGRAPHICS COPROCESSORS

IBM 47xx PCI Cryptographic Coprocessor

• High-speed cryptography (for back then)

• Provides secure storage (e.g., keys)

• Tamper-resistant,
sensing and responding

• Detecting physical attacks:
probe, voltage, temperature, radiation

• Programmable

• Secure configuration and field updates

• Supported in PCs mainframes

• Windows, Solaris, Linux, AIX, OS/390, OS/400

• 4758 in 2001, followed in 2003 by the 4764, and in 2010 the 4765

Source: http://www-03.ibm.com/security/cryptocards/pcixcc/overhardware.shtml

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 26

4758 SECURE PACKAGING

Source: Ron Perez, IBM T.J. Watson Research Center

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 27

SUMMARY

Attacks

 Software (easiest attack vector today)

 Hardware (not hard but requires physical access)

 The number of hardware attacks are rising

Two key building blocks

 Integrity (know what it is you are running)

 Isolation / containment (prevent things going wrong and control
them when they do)

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 28

MATERIAL FOR FURTHER STUDY

Secure system design

 Ross Anderson, Security Engineering

Side channel attacks

 Jude Ambrose, Power Analysis Side Channel Attacks: The
Processor Design-level Context

 Paul Kocher, et al., Differential Power Analysis

Memory attacks

 Princeton memory attacks:
https://citp.princeton.edu/research/memory/,
https://www.cs.princeton.edu/~appel/papers/memerr.pdf

 USB, Firewire & Display Port DMA attacks:
http://work.delaat.net/rp/2011-2012/p14/report.pdf

Code inject attacks

 Roemer, et al., Return oriented programming: Systems,
Languages, and Applications

 Secure boot

 Bill Arbaugh, A secure and reliable bootstrap architecture

 TCG & TPM

 http://www.trustedcomputinggroup.org

 Sailer et al. Design and Implementation of a TCG-based
Integrity Measurement Architecture

 Secure virtualization

 Ron Perez, et al., Virtualization and Hardware-Based Security

 I/O virtualization

 Muli-Ben Yehuda, Utilizing IOMMUs for Virtualization in Linux
and Xen

 Trusted Execution Environments

 Global Platform

 Secure Coprocessor

 Todd Arnold, et al.,The IBM PCIXCC: A new cryptographic
coprocessor for the IBM eServer

http://www.cl.cam.ac.uk/~rja14/book.html
http://www.unsworks.unsw.edu.au/primo_library/libweb/action/dlDisplay.do?vid=UNSWORKS&docId=unsworks_5514
http://www.unsworks.unsw.edu.au/primo_library/libweb/action/dlDisplay.do?vid=UNSWORKS&docId=unsworks_5514
http://www.unsworks.unsw.edu.au/primo_library/libweb/action/dlDisplay.do?vid=UNSWORKS&docId=unsworks_5514
http://www.unsworks.unsw.edu.au/primo_library/libweb/action/dlDisplay.do?vid=UNSWORKS&docId=unsworks_5514
http://www.unsworks.unsw.edu.au/primo_library/libweb/action/dlDisplay.do?vid=UNSWORKS&docId=unsworks_5514
http://www.unsworks.unsw.edu.au/primo_library/libweb/action/dlDisplay.do?vid=UNSWORKS&docId=unsworks_5514
http://www.cryptography.com/public/pdf/DPA.pdf
http://www.cryptography.com/public/pdf/DPA.pdf
http://www.cryptography.com/public/pdf/DPA.pdf
https://citp.princeton.edu/research/memory/
https://citp.princeton.edu/research/memory/
https://www.cs.princeton.edu/~appel/papers/memerr.pdf
https://www.cs.princeton.edu/~appel/papers/memerr.pdf
https://www.cs.princeton.edu/~appel/papers/memerr.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
http://work.delaat.net/rp/2011-2012/p14/report.pdf
https://cseweb.ucsd.edu/~hovav/dist/rop.pdf
https://cseweb.ucsd.edu/~hovav/dist/rop.pdf
http://www.umiacs.umd.edu/publications/secure-and-reliable-bootstrap-architecture
http://www.umiacs.umd.edu/publications/secure-and-reliable-bootstrap-architecture
http://www.umiacs.umd.edu/publications/secure-and-reliable-bootstrap-architecture
http://www.umiacs.umd.edu/publications/secure-and-reliable-bootstrap-architecture
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org
https://www.usenix.org/legacy/event/sec04/tech/full_papers/sailer/sailer_html/
https://www.usenix.org/legacy/event/sec04/tech/full_papers/sailer/sailer_html/
https://www.usenix.org/legacy/event/sec04/tech/full_papers/sailer/sailer_html/
https://www.usenix.org/legacy/event/sec04/tech/full_papers/sailer/sailer_html/
https://www.usenix.org/legacy/event/sec04/tech/full_papers/sailer/sailer_html/
https://www.usenix.org/legacy/event/sec04/tech/full_papers/sailer/sailer_html/
https://www.usenix.org/legacy/event/sec04/tech/full_papers/sailer/sailer_html/
http://www.computer.org/csdl/mags/sp/2008/05/msp2008050024-abs.html
http://www.computer.org/csdl/mags/sp/2008/05/msp2008050024-abs.html
http://www.computer.org/csdl/mags/sp/2008/05/msp2008050024-abs.html
http://www.computer.org/csdl/mags/sp/2008/05/msp2008050024-abs.html
http://www.computer.org/csdl/mags/sp/2008/05/msp2008050024-abs.html
http://landley.net/kdocs/ols/2006/ols2006v1-pages-71-86.pdf
http://landley.net/kdocs/ols/2006/ols2006v1-pages-71-86.pdf
http://landley.net/kdocs/ols/2006/ols2006v1-pages-71-86.pdf
http://landley.net/kdocs/ols/2006/ols2006v1-pages-71-86.pdf
http://landley.net/kdocs/ols/2006/ols2006v1-pages-71-86.pdf
http://landley.net/kdocs/ols/2006/ols2006v1-pages-71-86.pdf
http://landley.net/kdocs/ols/2006/ols2006v1-pages-71-86.pdf
http://www.globalplatform.org/mediaguidetee.asp
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5388875
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5388875
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5388875
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5388875

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 29

GLOSSARY OF TECHNICAL TERMS

OTP – One Time Programmable

PCR – Program Configuration Register

POST – Power On Self Test

ROT – Root of Trust

SOC – System On a Chip

SPA – Simple Power Analysis

TCB – Trusted Computing Base

TLB – Translations Lookaside Buffer

TPM – Trusted Platform Module

TSM – Trusted Service Manager

VM – Virtual Machine

VMM – Virtual Machine Monitor

 ACL – Access Control List

 AIK – Attestation Identity Key

 CPU – Central Processing Unit

 CRTM - Core Root of Trust Management

 DES – Data Encryption Standard (obsolete algorithm)

 DPA – Differential Power Analysis

 EM – Emission

 EMSEC - Emission Security

 GPU – Graphics Processing Unit

 GRUB – Linux bootstrap loader

 HSM – Hardware Security Model

 IOMMU – I/O Memory Management Unit

 MMU - Memory Management Unit

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 30

BIOGRAPHY

Dr. Leendert van Doorn is a Corporate Fellow and Corporate VP at AMD

where he is responsible for driving software innovation across the company.

He actively engages with AMD’s software partners to understand their long-

term roadmaps and reflects this input back into AMD’s roadmaps, while at the

same time evangelizing AMD’s future plans with AMD’s partners.

Leendert is responsible for AMD’s security, virtualization, manageability, and

software ecosystem strategies. During the last 4 years he has been actively

driving AMD's ARM 64-bit server ecosystem enablement. He is a member of

AMD’s Innovation Leadership Team and actively participates in AMD’s

domain roadmap process.

Before joining AMD he was a Sr. Manager at IBM’s T.J. Watson Research

Center where he lead virtualization, system security, penetration and security

usability research teams. Leendert holds a Ph.D. from the Vrije Universiteit in

Amsterdam, The Netherlands. Occasionally he is known to find refuge at

Carnegie Mellon University where he is an adjunct professor.

| HOTCHIPS 2014: SECURE SYSTEMS DESIGN TUTORIAL | AUGUST 10, 2014 31

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names

used in this presentation are for identification purposes only and may be trademarks of their respective owners.

©2014 Advanced Micro Devices, Inc. All rights reserved.

